Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Yue Jiang, ${ }^{\text {a* }}$ Zhao-Ming

 Xue, ${ }^{\mathbf{b}}$ Ke-Neng Wu ${ }^{\text {b }}$ and Jian Ma ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236032, People's
Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry \& Engineering, Anhui University, Hefei Anhui
230039, People's Republic of China

Correspondence e-mail: jiangxueyue@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.097$
Data-to-parameter ratio $=7.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-2-[4-(Diethylamino)styryl]pyridine

The molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$, is roughly planar and displays a trans configuration with respect to the $\mathrm{C}=\mathrm{C}$ double bond. The dihedral angle between the pyridine and benzene rings is $2.52(9)^{\circ}$.

Comment

After the experimental verification of two-photon absorption in Eu^{2+}-doped CaF_{2} crystals (Kaiser \& Garrett, 1961), materials showing two-photon absorption effects have been widely exploited in up-converted lasing (He, Bhawalkar et al., 1995), optical limiting devices (He, Xu et al., 1995), two-photon fluorescence microscopy and three-dimensional optical data storage (Dimitri \& Rentzepis, 1989). In the course of our study aimed at the design of new materials with strong two-photon absorption, the title compound, (I), has been synthesized and its crystal structure is reported here.

In the title compound, the $\mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 8$ bond lengths (Table 1) are intermediate between single and double bonds, indicating significant conjugation of the aromatic π systems. All other bond lengths and angles are in normal ranges (Allen et al., 1987). The molecule is roughly planar, with a dihedral angle between the benzene and pyridine rings of $2.52(9)^{\circ}$. The crystal structure is stabilized by intra- and intermolecular hydrogen-bonding interactions (Table 2).

Experimental

Potassium ($2 \mathrm{mmol}, 78 \mathrm{mg}$) and tert-butyl alcohol ($12 \mathrm{mmol}, 888 \mathrm{mg}$) were introduced into a round-bottomed flask at room temperature and stirred for 2.5 h . 4-(Diethylamino)benzaldehyde (1.0 mmol , 177 mg) and 2-methylpyridine ($1.0 \mathrm{mmol}, 93 \mathrm{mg}$) were added to the mixture, which was stirred for 2 h at 343 K . The tert-butyl alcohol was gradually removed under reduced pressure. The solution was then cooled to room temperature and poured into a mixture of dichloromethane (10 ml) and ice-water (10 ml) with stirring. The aqueous phase was extracted with dichloromethane $(2 \times 5 \mathrm{ml})$. After evaporation of dichloromethane, the crude product was obtained. Crystals of the title compound suitable for the X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution. Elemental analysis found: C 80.96, H 7.91, N 11.13%; calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{C} 80.91, \mathrm{H} 7.91, \mathrm{~N} 11.13 \%$.

organic papers

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=252.35$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.594$ (2) \AA
$b=9.604$ (3) A
$c=19.932$ (6) A
$V=1453.6(7) \AA^{3}$

Data collection

Bruker SMART CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.966, T_{\text {max }}=0.987$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.097$
$S=1.06$
1506 reflections
191 parameters
H atoms treated by a mixture of independent and constrained refinement
$Z=4$
$D_{x}=1.153 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.52 \times 0.43 \times 0.19 \mathrm{~mm}$

7665 measured reflections 1506 independent reflections 1081 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0259 P)^{2}\right. \\
\quad \\
\quad+0.4698 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: SHELXL97 }
\end{array} .=\text {. }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1$	$1.01(2)$	$2.48(2)$	$2.864(3)$	$102.0(13)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.95(3)$	$2.52(3)$	$3.443(4)$	$165(2)$

Symmetry code: (i) $-x+2, y-\frac{1}{2},-z-\frac{1}{2}$.
The H atoms on $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 6$ and C 7 were located in a difference Fourier map and refined freely $[\mathrm{C}-\mathrm{H}=0.94$ (3)-1.01 (3) Å]. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ (methyl C) and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

One of the authors (XYJ) acknowledges Fuyang Normal College for research grants.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Dimitri, A. P. \& Rentzepis, P. M. (1989). Science, 245, 843-845.
He, G. S., Bhawalkar, J. D., Zhao, C. F. \& Prasad, P. N. (1995). Opt. Lett. 20, 2393-2395.
He, G. S., Xu, G. C., Prasad, P. N., Reinhardt, B. A., Bhatt, J. C. \& Dillard, A. G. (1995). Opt. Lett. 20, 435-437.

Kaiser, W. \& Garrett, C. G. B. (1961). Phys. Rev. Lett. 7, 229-231.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

